На правах рукописи

Сафронова Александра Андреевна

Биологические и хозяйственные особенности скота герефордской породы разных генотипов

4.2.4. Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Федеральный научный центр биологических систем и агротехнологий Российской академии наук».

Научный руководитель:

доктор сельскохозяйственных наук, Джуламанов Киниспай Мурзагулович.

Официальные оппоненты:

Сеитов Марат Султанович, доктор биологических наук, профессор, ФГБОУ ВО «Оренбургский государственный аграрный университет», кафедра незаразных болезней животных, заведующий.

Суржикова Евгения Семёновна, кандидат сельскохозяйственных наук, ФГБНУ «Северо-Кавказский федеральный научный аграрный центр», отдел генетики и биотехнологий, лаборатория иммуногенетики и ДНК-технологий, ведущий научный сотрудник.

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный аграрный университет».

Защита диссертации состоится 25 декабря 2025 года в 11:30 часов на заседании диссертационного совета 24.1.252.01 на базе ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» по адресу: 460000, г. Оренбург, ул. 9 Января, 29, тел. 8 (3532) 30-81-70.

С диссертацией можно ознакомиться в библиотеке ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» и на сайте: http://www.fncbst.ru, с авторефератом - на сайтах http://www.fncbst.ru и http://www.vak.minobrnauki.gov.ru.

Автореферат разослан «	»	2025 г.
	17.	

Ученый секретарь диссертационного совета Bal-

Завьялов Олег Александрович

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В мясном скотоводстве ключевым эффективность определяющим производственного является уровень воспроизводства в стаде и выживаемость полученного приплода (Лебедев С.В. и др., 2024). Развитие данной отрасли существенно ограничивается несовершенством существующих технологий разведения и их относительно низкой экономической эффективностью (Дускаев Г.К. и др., 2022). Проведение детального анализа воспроизводительных характеристик представляет собой инструмент животных важный ДЛЯ оптимизации продуктивности скота И повышения его экономической мясного целесообразности. В связи с этим важно определить пути совершенствования методов селекции с учетом региональных особенностей, которые помогут максимизировать генетический потенциал. Также существует необходимость определения влияния линейных связей на рост, развитие и репродуктивные качества герефордской породы.

Степень разработанности темы. в современной селекции мясного скота наблюдается смещение акцентов с традиционных критериев оценки, таких как молочность, экстерьерный тип и живая масса, на эксплуатационные параметры, воспроизводительную адаптационную приспособленность, И эффективность использования корма (Хакимов И.Н. и др., 2023; Сеитов М.С. и Левицкая Т.Т., 2021; Шичкин Г.И. и др., 2023). Это обусловлено необходимостью повышения эффективности животноводческих систем в условиях изменяющихся экологических и экономических факторов. В связи с этим очень важно с учетом региональных особенностей определить подходы совершенствования методов способствовали бы наиболее селекции, которые полной генетического потенциала (Суржикова Е.С. и др., 2023). Также необходимо влияние линейной принадлежности на рост, развитие воспроизводительные качества герефордской породы.

Цели и задачи исследования. Целью работы являлось изучение биологических, племенных и хозяйственных особенностей скота герефордской породы разных генотипов. Исследования проводились в рамках выполнения НИР ФНЦ БСТ РАН №FNWZ-2021-0001 и №FNWZ-2022-0018.

Для выполнения были поставлены следующие задачи:

- провести оценку быков-производителей, коров и молодняка разных генетических групп по комплексу хозяйственно-биологических признаков;
- провести мониторинг адаптационных качеств бычков с учетом интерьерных показателей;
- разработка нового способа оценки и отбора быков-производителей на основе индексной оценки по адаптационной племенной ценности;
- оценить мясную продуктивность и качество мяса по генам гормона роста и тиреоглобулина;
- изучить биоконверсию питательных веществ рационов из местных кормов в мясную продукцию герефордов разных генотипов;
- определить пищевую и биологическую ценность мяса;

• обосновать экономическую эффективность разведения бычков герефордской породы разных генотипов.

Научная новизна исследований. Впервые в условиях Южного Урала проведены комплексные исследования продуктивных и воспроизводственных качеств герефордского скота разных генотипов. Впервые разработан способ отбора быков мясных пород скота с адаптационной племенной ценностью (Патент РФ на изобретение RU 2779936 C1, 15.09.2022). Получены новые данные по повышению генетического потенциала мясной продуктивности герефордской породы скота с использованием маркерной селекции.

Теоретическая значимость работы состоит в разработке новых подходов повышения эффективности воспроизводства стада через повышение объективности и точности оценки племенной ценности быков-производителей, что открывает новые возможности совершенствования отечественных популяций герефордской породы скота. Результаты исследований углубляют знания о генетических факторах и биологическом потенциале повышения производства говядины.

Практическая значимость исследований. Разработанный и апробированный новый способ отбора быков мясных пород скота с адаптационной племенной ценностью (Патент РФ на изобретение RU 2779936 C1, 15.09.2022) позволяет отбирать быков-производителей с наилучшими воспроизводительными качествами. Разведение перспективных генотипов герефордской породы скота позволяет дополнительно получать в расчете на 1 голову 33-45 кг мяса и повысить рентабельность производства говядины на 6%.

Методология и методы исследований. Для достижения цели и решения задач использовались стандартные молекулярно-генетические, физиологические, биохимические и зоотехнические методы исследования с использованием современного оборудования. Полученные цифровые данные обработаны при помощи приложения «Excel» из программного пакета «Office» и «STATISTICA10.0».

Основные положения, выносимые на защиту:

- обоснование хозяйственно-биологических параметров животных разных генотипов;
- результаты оценки биологической ценности мяса;
- хозяйственные биологические параметры оценки по биоконверсии питательных веществ корма в мясную продукцию;

Степень достоверности и апробация работы. Научные положения, выводы и рекомендации, сформулированные в ходе исследования, основаны на убедительных фактических данных, которые приведены в таблицах и рисунках.

Основные положения диссертационной работы доложены и получили положительную оценку: III Всероссийская научно-практическая конференция Посвящённая 70-летию Пензенского государственного аграрного университета (Пермь, 2021), IOP Conference Series: Earth and Environmental Science (2021), Всероссийская молодежная научно-практическая конференция посвященная 300-летию Российской академии наук «Наука будущего — наука молодых» (Оренбург, 2022), III Всероссийская молодежная научно-практическая

конференция «Наука будущего – наука молодых» памяти заслуженного деятеля науки К.А. Акопяна (Оренбург, 2024), Международная научно-практическая конференция «Зоотехния сегодня – приоритеты и перспективы развития» (Оренбург, 2025г.)

Публикации результатов исследований. По теме диссертационной работы написано 5 работ в изданиях, рекомендованных ВАК Министерства науки и высшего образования Российской Федерации для публикации на соискание ученой степени кандидата наук. Получен патент «Способ отбора быков мясных пород скота с адаптационной племенной ценностью» № 2779936.

Реализация результатов исследован. Результаты исследования внедрены в ООО «Агрофирма Калининское» Челябинской и ООО «Омеко-труд» Оренбургской областей.

Структура и объем работы. Работа изложена на 146 страницах компьютерного текста, содержит 5 рисунков и 22 таблиц. Диссертация состоит из введения, обзора литературы, материалов и методов исследований, результатов собственных исследований, обсуждения, заключения и списка литературы. Список литературы включает 258 источника, из них — 15 иностранных.

2. Материал и методика исследований

Объектом исследования были быки-производители, коровы, молодняк герефордской породы скота разных генетических групп.

Исследования проводились в период 2020-2024 гг. в племзаводах ООО «Агрофирма Калининская» и $K(\Phi)X$ «Риск» Челябинской области (Рис. 1). Выполнение задач исследования осуществлялось как путем постановки специальных экспериментов, так и на основе использованных данных племенного учета стада.

Для контроля за физиологическим состоянием определяли морфологический, биохимический и гормональный состав крови. У подопытных животных брали пробы крови из яремной вены, которую вносили в пробирки до получения объёма 10 мл. Для определения гематологических особенностей использовали пробирки с активатором свёртывания (SiO₂) и пробирки с ЭДТА, автоматический биохимический анализатор Dirui CS-T240, ветеринарный автоматический гематологический анализатор DF50 Vet, автоматический микропланшетный анализатор InfiniteF200 PRO.

Для молекулярно-генетического анализа полиморфизмов генов GH L127V (гормон роста) и TG5 C422T (тиреоглобулин) у экспериментальных животных осуществляли забор венозной крови с последующей экстракцией геномной ДНК с использованием набора «DIAtomtm DNA Prep» (IsoGeneLab, Mockba).

Контрольный убой бычков разных генотипов по генам GH и TG5 провели в 21-месячном возрасте.

Все исследования проведены в Центре коллективного пользования ФГБНУ ФНЦ БСТ РАН с соблюдением стандартных протоколов и методов контроля качества http://цкп-бст.рф.

Расчет биоконверсии питательных веществ и энергии корма в мясную продукцию проводили по В.И. Левахину и др. (1999).

Некоторые биологические и хозяйственные особенности герефордской породы скота разных генотипов

Рисунок 1 – Схема исследования

Плодовитость (H) каждого изучаемого быка устанавливали по фактическому выходу отъемных потомков (бычки + телки), определяемой соотношением количества отнятых телят к общему поголовью осемененных телок в сезон случки продолжительностью 60 дней, по формуле:

$$H = \frac{\text{количество отъемных телят}}{\text{количество осемененных телок}} \times 100\% \tag{1}$$

Плодовитость телок-дочерей определяли по уровню их оплодотворяемости, соотношением количества плодотворно слученых животных к общему числу выращенных телок для случки по каждой группе в соответствие с происхождением по быку-отцу.

Индекс адаптационной племенной ценности (ИАПЦ) быковпроизводителей определялся по шкале (табл. 1) по представленной формуле (2):

$$\text{ИАПЦ}(N) = Hi + Zi + Mi + Ti$$
 (2)

где, H — плодовитость быка по выходу телят при отъеме от осемененного поголовья телок (не менее 40 голов) в сезон случки в интервале 60 дней, %; Z — плодовитость телок-дочерей (не менее 25 голов) по оплодотворяемости их после осеменения в сезон случки в интервале 60 дней, %;

M — ожидаемая мясная продуктивность по средней живой массе при отъеме всех телят от оцениваемого быка, кг;

Т – средняя живая масса телок-дочерей в возрасте 12 мес., кг;

i – показатели отбора (критерии развития того или иного признака в баллах);

N – инвентарный номер быка.

Таблица 1 — Шкала оценки быка-производителя для выведения его индекса адаптационной племенной ценности (ИАПЦ)

Символ признака и показатель отбора	Селекционный п продуктивнос	Значение признака в структуре индекса, балл					
Н	отъеме от осемененн (не менее 40 голог	Плодовитость быка по выходу телят при отъеме от осемененного поголовья телок (не менее 40 голов) в сезон случки в интервале 60 дней, %					
H1	элита - рекорд	60%	30				
H2	Элита	55%	25				
Н3	I класс	50%	20				
Z	голов) по оплодотв осеменения в сезон с	Плодовитость телок – дочерей (не менее 25 голов) по оплодотворяемости их после осеменения в сезон случки в интервале 60 дней, %					
Z1	элита - рекорд	65%	35				
Z2	Элита	60%	30				
Z3	I класс	55%	25				
Z4	II класс	50%	20				
М	средней живой массе	продуктивность по при отъеме всех телят мого быка, кг					
M1	элита – рекорд		25				
M2	Элита		15				
M3	I класс		10				
M4	II класс		5				
Т	Средняя живая мас возраст						
T1	элита- рекорд		15				
T2	Элита		10				
Т3	І класс		5				

Экономическую эффективность выращивания молодняка разных генотипов рассчитывали исходя из фактических сложившихся производственных затрат и реализационной стоимости животных при убое.

Статистическая обработка. Анализ данных проводили с использованием программ «Excel» («Microsoft», США) и «Statistica 10» («StatSoftInc.», США) по алгоритмам описательной статистики, корреляционным и дисперсионным анализом. Определение значимости различий между групповыми средними проводили по критериям Стьюдента, Фишера (F-критерий), Тьюки для неравных и равных выборок при этом критический уровень значимости в данном исследовании принимался $P \le 0.05$.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1Селекционно-генетическая оценка стада герефордской породы

3.1.1 Характеристика быков-производителей разных селекционных групп

Объективным признаком при отборе быков-производителей и формировании бычьего стада для воспроизводства в условиях технологии мясного скотоводства является наращивание живой массы в отдельные периоды выращивания. У ремонтных бычков высокой живой массы как в возрасте молодняка до 2 лет, так и в более старшем (полновозрастной) в 5 лет. Наилучшие соотношение установлено у бычков-потомков от быков-производителей генеалогических линий Дайса и Таймлайн.

С возрастом разница по изучаемому селекционному признаку у молодняка разных генотипов становилась более существенной. Так, в 2 года бычки уральского герефорда уступали сверстникам канадской и американской селекции на 57,2 кг (9,0%; P<0,05) и 73,2 кг (11,5%; P<0,01). Высокая продуктивность племенных бычков-потомков Дайса и Таймлайна и четко долгорослость дали основание использовать их потомков в укреплении генеалогической структуры стада племенного завода. Использование продолжателей родственных групп Дайса и Таймлайна в стаде ускорило создание долгорослого типа герефордского скота с интенсивностью роста до 12 мес 960-970 г, до 18 мес 1020-1030 г.

В возрасте 18 месяцев потомки Дайса и Таймлайна превышали требования высшего бонитировочного класса элита-рекорд по живой массе на 14,0 — 16,0%. Это в значительной степени предопределила рекордно высокую массивность тела в последующие возрасты. Так, в возрасте 5 лет по 10 племенным быкампродолжателям данных групп изучаемый селекционный признак составил 1001,6 и 1035,4 кг, соответственно. В то же время отдельные генотипы имели живую массу от 1310 до 1380 кг.

3.1.2Характеристика маточного стада разных селекционных групп

Средняя живая масса коров-дочерей от быков разных генетических групп в возрасте 3-х лет составила 453,0-490,5 кг. Это выше стандарта герефордской породы на 23,0-60,5 кг (5,3-14,1%). Среди изучаемых селекционных групп животных лучшими показателями продуктивности характеризовались коровы от быков-производителей канадской селекции. В возрасте 3-х лет они превосходили сверстниц уральской селекции (от быка Фордера) на 19,0-31,5 кг (Р<0,05-0,01).

Формируемая генеалогическая группа канадской селекции характеризуется достаточно высокой молочной продуктивностью. По отъемной живой массе молодняка в возрасте 7 месяцев коровы по первому отелу соответствовали требованию класса элита-рекорд. По высоте в крестце и развитию мясных статей изучаемые генеалогические линии соответствовали требованиям элита и элита-рекорд.

Большая вариабельность оценки по живой массе установлена у коровпервотелок генеалогических линий Дайса и Таймлайна, что указывает на наличие особей, отвечающих направлению отбора, то есть с более выраженной массивностью. В возрасте 5 лет они заметно увеличили преимущество по изучаемому селекционному до 38,0-48,7 кг (P<0,001). Были отнесены к классу элита-рекорд, а животные от Фордера – к классу элита. Это свидетельствует о том, что разнообразие группы коров Фордера несколько ниже, животные более скороспелы, менее массивны с выраженным признаком компактного телосложения. Коровы от Дайса и Таймлайна высокорослая и разнородная, что позволяет более успешно вести дальнейшую племенную работу в направлении увеличения живой массы.

3.1.3 Формирование племенной ценности телок разных селекционных линий

Большая вариабельность по высоте в крестце, выраженности типа телосложения установлены у телок линии Таймлайна и Дайса. Значительное содержание в данных генетических группах животных «плюс вариантов» по изучаемому селекционному признаку указывает на наличие особей, отвечающих направлению отбора, то есть с более выраженной высокорослостью.

Высокие показатели продуктивности у телок от Дайса и Таймлайна способствовали большему количеству животных высших бонитировочных классов. Животных высших классов варьировало от 78 до 82 %. Следовательно, быкипроизводители Дайс и Таймлайна являются абсолютными улучшателями стада.

3.2 Отбор быков-производителей по адаптационной племенной ценности

Анализ данных по искусственному осеменению телок глубокозамороженным семенем (с учетом количества успешных оплодотворений в течение 60-дневного случного сезона) выявил значительные различия между производителями по данному параметру (табл. 2).

Таблица 2. Характеристика быков-производителей по результатам осеменения телок

осеменения телок										
	Ocen	иенено т	Получено живых телят, гол			Получено телят к отъему				
Быки-отцы	Быки-отцы в т.ч. n плодотво			n B		т.ч.	всего		6	9
		гол.	%		O	<u> </u>	гол.	%		
	ООО «АФ К				ая»					
Мазай 117	177	98	55,4	96	50	46	94	53,1	50	44
Дубок 7517	136	85	62,5	82	40	42	78	57,3	38	40
Виктор 719Т	101	67	66,3	62	33	29	57	56,4	29	28
Timeline 237 W	98	64	65,3	60	31	29	54	55,1	28	26
Всего	512	314	61,3	300	154	146	283	55,3	145	138
			КФХ «	Риск»						
Джозеф GB 185	95	62	65,3	61	32	29	58	61,05	32	26
Павлин 4676	109	59	54,1	57	27	30	55	50,46	26	29
Всего	204	121	59,3	118	59	59	113	55,4	58	55

Быки -производители с высоким адаптационным потенциалом отличались большим (56,4-61,05 %) выходом отъемного приплода.

Несмотря на общеизвестно низкую наследуемость воспроизводительных качеств у крупного рогатого скота, проведенные исследования оплодотворяемости дочерних особей от контрольных быков в течение 60-дневного случного периода доказали возможность эффективного использования генетического потенциала лучших производителей для совершенствования племенных качеств стада.

Уровень плодотворных осеменений телок- потомков изучаемых быковпроизводителей варьировал в диапазоне 46,2-60,0%, при этом среднее значение составило 53,63%.

Адаптационные качества быков-производителей дополнительно оценивались по динамике весового роста их прямых потомков через анализ динамики весового роста их прямых потомков. Наилучшей племенной ценностью характеризовался бык-производитель Таймлайн. Этот параметр служит важным индикатором, позволяющим объективно оценить способность генетического материала производителей обеспечивать развитие жизнестойкого и продуктивного потомства в конкретных условиях содержания. Полученные данные подчеркивают необходимость учета адаптационного потенциала как ключевого критерия при отборе племенных животных для последующего воспроизводства стада.

При этом наибольшими племенными качествами в этом возрасте отличались потомки быков-производителей Таймлайна 237 и Виктора 719. Разница в пользу бычков и телок этих производителей по сравнению с животными от Мазая и Дубка составили 8-19 кг (3,8-9,3%; P>0,05, P<0,05-0,01).

Решение задачи выбора быка-производителя с наилучшей адаптационной ценностью, как для искусственного осеменения, так и в естественной случке. Выбираются быки-производители, имеющие индекс адаптационной племенной ценности (ИАПЦ) от 80 баллов для воспроизводства племенного стада. Высокая технологическая ценность быка определяется количеством коров, успешно случной сезон (45-60 дней). Повышает эффективность осемененных в воспроизводства счёт В стадах мясного скота за снижения числа неоплодотворенных маток.

3.2.1Интерьерные показатели бычков разных селекционных групп 3.2.1.1Морфологический и биохимический состав крови бычков

Содержание гемоглобина в крови животных отечественной популяции превышало показатели молодняка канадской и американской селекции на 12,57-13,71 г/л (14,9-16,5%), соответственно. Таким образом, лучшая приспособленность к кормовым условиям бычков I группы выражалась в повышенном потреблении кислорода, который необходим для окислительновосстановительных процессов в организме (табл. 3).

Также бычки отечественного происхождения отличались наиболее благоприятной лейкограммой крови и обладали лучшей адаптацией к факторам внешней среды.

Таблица 3 - Морфологический состав крови герефордских бычков разных

селекционных групп

, I J						
	Группа					
Показатель	Уральский	Канадская	Американская			
	герефорд	селекция	селекция			
Лейкоциты, $10^9/л$	$6,47\pm1,088$	4,94±0,723	4,25±0,710			
Эритроциты, $10^{12}/\pi$	5,28±0,548	4,53±0,467	4,57±0,452			
Гемоглобин, г/л	96,71±9,675	84,14±8,450	83,00±9,649			
Гематокрит, %	22,63±2,114	19,21±1,916	19,39±2,134			
Средний объем эритроцитов, фл	43,17±0,706	42,54±0,680	42,39±1,366			
Среднее содержание гемоглобина в	18,37±0,209	18,61±0,683	18,07±0,527			
эритроците, пг	16,57±0,209	16,01±0,063	10,07±0,327			
Средняя концентрация гемоглобина	425,86±4,160	438,14±16,568	426,71±3,803			
в эритроцитарной массе, г/л	423,0014,100	430,14±10,300	420,71±3,003			
Тромбоциты, $10^9/л$	170,43±44,369	147,43±37,661	117,71±30,420			
Средний объем тромбоцитов, фл	$8,44\pm0,226$	$8,48\pm0,252$	8,47±0,252			
Ширина распределения	16,93±0,425	16,85±0,353	16,26±0,691			
тромбоцитов по объему, фл	10,7550,425	10,65±0,555	10,2050,091			
Тромбокрит, %	$0,14\pm0,037$	$0,14\pm0,031$	$0,10\pm0,024$			

3.3 Мясная продуктивность и качества мяса бычков в зависимости от генотипа по генам GH и TG5

3.3.1Убойные показатели и прижизненная оценка мясной продуктивности бычков в зависимости от генотипа по генам GH и TG5

V-аллель гена GH у герефордского скота ассоциировалась с повышенной массой туши, причём VV-гомозиготы значительно превосходили LL-особей на 45.0 кг (13.61 %; P<0.05). Более интенсивный процесс накопления внутреннего жира фиксировался у гетерозиготных бычков, которые превосходили гомозиготных сверстников по массе жира на 0.7-1.2 кг (4.40-7.79 %; P>0.05) и его выходу – на 0.2 % (P>0.05) (табл. 4).

Таблица 4. Влияние полиморфизмов генов GH и TG5 на динамику

показателей убоя герефордских бычков (X±Sx)

	. 1 1''						
Показатель		GH		TG5			
Показатель	LL	LV	VV	CC	CT	TT	
Предубойная масса,	$566,0\pm$	$609,0\pm$	629,0±	$607,7 \pm$	597,3±	599,0±	
КГ	24,03	23,46	5,51	22,51	26,77	30,66	
Масса туши, кг	$330,7\pm$	$363,0\pm$	375,7±	$364,7\pm$	$350,3\pm$	354,3±	
	13,72 ^a	16,09	$6,36^{a}$	16,70	17,75	19,43	
Выход туши, %	58,4±	59,6±	59,7±	60,0±	58,6±	59,1±	
	0,34	0,36	0,80	0,55	0,61	0,50	
Масса внутреннего	15,4±	16,6±	15,9±	16,7±	15,2±	16,0±	
жира, кг	0,49	0,91	1,08	0,78	0,57	1,04	
Выход внутреннего	2,73±	2,73±	2,53±	$2,76\pm$	$2,56\pm$	2,66±	
жира, %	0,15	0,17	0,19	0,19	0,22	0,09	

Примечание: значения с одинаковыми индексами в строке различаются при ^а – P<0,05

У носителей СС-генотипа зафиксирована наивыешая величина абсолютно по всем признакам убоя, а минимальные значения установлены у гетерозиготных животных.

3.3.2 Анатомо-морфологическая характеристика туши бычков разных генотипов по генам GH и TG5

LL-генотип отличался минимальной массой мякоти, костей и максимальной массой жировой ткани(табл.5).

Таблица 5. Морфологический состав полутуши герефордских бычков разных генотипов по генам GH и TG5 ($X\pm Sx$)

Показатель		GH			TG5			
Показатель	LL	LV	VV	CC	CT	TT		
Масса полутуши, кг	161,7±6,69	178,0±7,77	184,3±3,18	179,0±8,19	171,2±8,88	173,3±9,56		
Масса мякоти, кг	114,2±5,94 ^a	134,0±5,18	139,8±3,70 ^a	137,0±6,44	126,1±8,21	124,9±10,09		
Масса жира, кг	22,7±1,04 ^{ab}	15,6±2,00a	16,3±1,23 ^b	14,3±1,72a	18,5±1,21	21,8±1,95 ^a		
Масса костей	$22,4\pm0,80^{ab}$	$25,5\pm0,52^{a}$	$25,5\pm0,30^{b}$	25,0±0,26	24,4±1,75	24,1±0,93		
Масса сухожилий, кг	2,3±0,30	2,9±0,20	2,8±0,09	2,7±0,06	2,7±0,15	2,6±0,47		

Примечание: а, в значения с одинаковыми индексами в строке различаются при Р<0,05

Различия между группами носителей V-аллеля и LL-генотипом по массе мышечной ткани составляли 19,8-25,6 кг (17,3-22,4%; P<0,05). Более интенсивное жироотложение у бычков с LL-генотипом выражалось в значительном превосходстве по накоплению жира в полутуше на 6,4-7,1 кг (39,3-45,5%; P<0,05) относительно сверстников с V-аллелем. Ранг распределения генотипов по гену GH по содержанию костной ткани соответствовал развитию мякотной части туши при разнице между группами 3,1 кг (13,8%; P<0,05).

3.3.3 Химический состав и энергетическая ценность мяса бычков разных генотипов по генам GH и TG5

Наибольшее содержание жира (превышение на 1,11-1,42%) при минимальном уровне белка (снижение на 0,82-1,25%) характерно для LL-генотипа по сравнению с животными - носителями V-аллели (табл. 6).

Таблица 6. Влияние полиморфизмов генов GH и TG5 на химический состав мяса-фарша у герефордских бычков (X±Sx), %

Показатель	1 1 1	GH	\ //	TG5			
Показатель	LL	LV	VV	CC	CT	TT	
Влага	69,94±	$70,10\pm$	70,22±	$70,62\pm$	69,70±	69,94±	
	1,11	1,81	1,15	1,31	1,65	1,10	
Жир	11,06±	$9,64 \pm$	9,95±	$9,44\pm$	$10,38\pm$	$10,82\pm$	
	1,74	1,56	1,04	1,24	1,20	1,91	
Белок	18,11±	19,36±	18,93±	19,03±	$19,02\pm$	18,35±	
	0,79	0,27	0,14	0,11	0,45	0,87	
Зола	0,89±	$0,90\pm$	0,90±	0,91±	$0,89\pm$	0,89±	
	0,02	0,02	0,01	0,01	0,01	0,02	

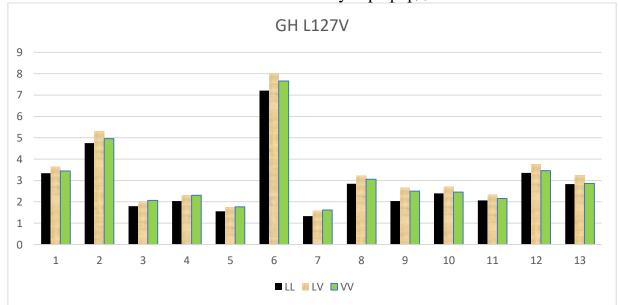
Эти данные свидетельствуют о выраженном влиянии полиморфизмов генов GH и TG5 на метаболические процессы, определяющие качественные характеристики конечной продукции.

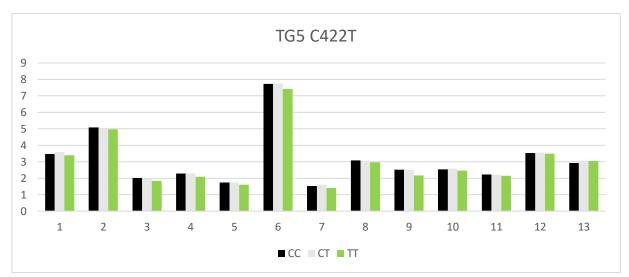
Несмотря на существенно большее содержание протеина в мякоти по сравнению с жиром у бычков всех генотипов вклад жира в энергетическую ценность мяса был выше (табл. 7).

Таблица 7. Выход питательных веществ и энергетическая ценность мякотной части туши герефордских бычков разных генотипов по генам GH и TG5 (X±Sx)

	Содержание в 1	кг мякоти, г	2000000000	в том числе эн	пергии, кДж	Всего
Генотип	протеина	жира	Заключено энергии в 1 кг мякоти, кДж	и в 1 кг		энергии в мякоти туши, МДж
			GH			
LL	181,1±	110,6±	7414,5±	3109,3±	4305,2±	2026,9±
LL	7,91	17,43	563,87	135,71	678,57	152,25
LV	193,6±	96,4±	7076,1±	3323,9±	$3752,2\pm$	2121,6±
LV	2,74	15,57	653,10	47,09	606,14	240,62
VV	189,3±	99,5±	7123,2±	3248,9±	$3874,3\pm$	2226,9±
V V	1,39	10,41	426,37	23,79	405,48	173,42
	_		TG5			
CC	190,3±	94,4±	6943,1±	3266,1±	$3677,0\pm$	2112,2±
CC	1,07	12,36	495,63	18,44	481,41	244,02
СТ	190,2±	103,8±	7308,5±	$3265,5\pm$	4043,0±	2125,0±
CI	4,54	12,03	546,51	77,94	468,61	244,14
TT	183,5±	108,2±	7362,2±	3150,5±	4211,7±	2138,1±
11	8,68	19,06	602,93	149,04	742,00	42,85

Причем по соотношению энергии жира и протеина между группами животных имелись различия. В разрезе генотипов по гену GH наивысшее соотношение энергия жира и протеина фиксировалось у носителей LL-генотипа 1,41:1, а наименьшее у гетерозиготного молодняка 1,12:1. Среди генотипов по гену TG5 крайними вариантами этого показателя выделялись альтернативные гомозиготные генотипы с максимальной выраженностью у TT-носителей (1,37:1) и минимальной у СС-особей (1,12:1).


3.3.4. Жирнокислотный состав длиннейшей мышцы спины бычков разных генотипов по генам GH и TG5


Тенденция к высокому содержанию полиненасыщенных жирных кислот на 0,44 % (P=0,055) и меньшему на 0,46 % (P>0,05) насыщенных выявлена у носителей LL-генотипа относительно альтернативного гомозиготного варианта гена. Это выражалось в лучшем соотношении ПНЖК/НЖК на 0,010 ед. (P=0,06). Преимущество в ПНЖК у бычков с LL-вариантом гена GH обеспечивалось благодаря повышенному синтезу линолевой на 0,20-0,30 % (P=0,10) и линоленовой на 0,06-0,13 % (P>0,05) жирных кислот по сравнению со сверстниками. Выявленный ранг распределения генотипов по жирнокислотному профилю мяса обеспечил молодняку с ТТ-вариантом гена TG5 значительное превосходство по ПНЖК/НЖК соотношению, которое составляло 0,012 ед. (P<0,01).

3.3.5 Аминокислотный состав мяса бычков разных генотипов по генам GH и TG5

Проведенный анализ выявил статистически значимые различия (P<0,05) в содержании ключевых аминокислот между различными генотипами. В

частности, гетерозиготные особи демонстрировали более высокие показатели по аргинину (+0,31%) и серину (+0,27%) по сравнению с LL-гомозиготами, тогда как по метионину наибольшие значения наблюдались у альтернативных гомозигот (разница 0,29%) (Рис. 2). При сравнительном анализе суммарных показателей установлено, что гетерозиготные животные превосходили LL-гомозигот по содержанию незаменимых аминокислот на 3,09% (P=0,10) и заменимых - на 1,9% (P<0,05). Эти данные свидетельствуют о выраженном влиянии аллельных вариантов гена GH на белковый метаболизм и формирование аминокислотного состава мышечной ткани у герефордского скота.

Примечание: 1 - Аргинин, 2 — Лизин, 3 — Тирозин, 4 — Фенилаланин, 5 — Гистидин, 6 - Лейцин + Изолейцин, 7 — Метионин, 8 — Валин, 9 — Пролин, 10 — Треонин, 11 — Серин, 12 — Аланин, 13 — Глицин

Рисунок 2. Влияние полиморфизмов генов GH и TG5 на аминокислотный состав мяса герефордских бычков

Значительных различий по аминокислотному составу мяса и биологической ценности протеина между герефордскими бычками при группировке в зависимости от полиморфизма гена TG5 не выявлено.

3.3.6 Влияние GH L127V и TG5 C422T полиморфизмов на эффективность конверсии питательных веществ корма в мясную продукцию у герефордских бычков

Особенности синтеза питательных веществ в съедобных частях тела у бычков разных генотипов по гену GH определяли различия по коэффициентам конверсии протеина и энергии корма в пищевой белок и энергию мясной продукции (табл.8).

Таблица 8. Биоконверсия протеина и энергии корма в съедобные части тела герефордских бычков разных генотипов по генам GH и TG5 (X±Sx)

Помороже Т		GH		TG5			
Показатель	LL	LV	VV	CC	CT	TT	
Потреблено на 1 кг							
прироста живой массы:							
al moro importantia. E	$1092 \pm$	1085±	$1048\pm$	1083±	$1074\pm$	1067±	
сырого протеина, г	29,5	32,6	11,4	34,2	21,6	30,5	
обмонной оновени МЛм	$88,39 \pm$	83,30±	$78,\!57\pm$	$82,22\pm$	$84,06\pm$	83,98±	
обменной энергии, МДж	3,622	3,346	0,547	3,804	3,939	4,208	
Содержание протеина в	56,0±	64,8±	66,0±	64,3±	61,7±	60,8±	
теле, кг	4,67	3,36	1,77	3,27	4,05	5,94	
C	45,5±	45,5±	47,1±	44,6±	46,1±	47,3±	
Содержание жира в теле, кг	4,19	5,49	3,93	5,25	5,26	2,61	
Выход на 1 кг живой массы:							
THOUSAND F	98,7±	106,3±	104,9±	105,7±	103,2±	101,0±	
протеина, г	4,30	1,90	2,29	1,54	3,21	5,06	
NAVA 0 E	80,6±	74,5±	74,7±	73,0±	76,9±	79,9±	
жира, г	8,26	7,81	5,58	6,35	6,61	8,75	
амарууу МЛуу	5,51±	5,45±	5,42±	5,37±	5,47±	5,53±	
энергии, МДж	0,250	0,348	0,257	0,282	0,336	0,229	
Коэффициент конверсии	9,1±	9,8±	10,0±	9,8±	9,6±	9,5±	
протеина, %	0,63	0,43	0,18	0,40	0,39	0,72	
Коэффициент конверсии	6,2±	6,6±	6,9±	6,6±	6,5±	6,6±	
обменной энергии, %	0,36	0,55	0,38	0,59	0,57	0,08	

Различия между гомозиготными генотипами по биоконверсии протеина составляли 0,9% (P=0,19), а по обменной энергии — 0,7%. Наибольшей эффективность использования питательных веществ корма отличались бычки с VV-генотипом. Гетерозиготные животные имели промежуточные показатели конверсии. При группировке бычков в соответствии с генотипом по гену ТG5 вариабельность трансформации питательных веществ корма в продукцию находилась в узких пределах. В разрезе генотипов 9,5-9,8% сырого протеина и 6,5-6,6% обменной энергии корма расходовалось на образование тканей тела. При этом крайние варианты коэффициента конверсии протеина в выборке герефордских бычков достигали 8,05-10,29%, обменной энергии — 5,55-7,65%.

3.3.7. Экономическая эффективности выращивания бычков герефордской породы разных генотипов по генам GH и TG5

Анализ экономической эффективности выращивания бычков разных генотипов по генам GH и TG5 свидетельствует, что за счет большего количества

потребленных кормов и оплаты труда за большую живую массу выращивание животных с VV-генотипом гена GH оказались большими по сравнению с аналогами на 639,4-4406,3 руб. (0,6-4,5%). Вследствие более высокого уровня валового прироста живой массы себестоимость продукции у бычков с генотипом VV по гену GH была на 481,8 руб. и на 1193,1 руб. ниже, чем у сверстников.

При реализации молодняка на мясокомбинате стоимость животных VV-генотипа была выше на 3920 руб. и на 12348 руб. Соответственно и уровень рентабельности при выращивании бычков перспективного для селекции генотипа была выше на 2,2-5,3%. Наименьшей рентабельностью характеризовались бычки с LL-генотипом — 11,4%. Это обусловлено низким приростом живой массы за учетный период, что отразилось на реализационной стоимости на мясокомбинате. Таким образом, дифференцированный подход к выращиванию бычков разных генотипов по генам GH и TG5 позволяет повысить рентабельность производства говядины на 2-5%.

4. Заключение

Проведенные исследования по изучению биологических, племенных и хозяйственных особенностей скота герефордской породы разных генотипов дают возможность сделать следующие выводы:

- 1. При исследовании основных хозяйственно-полезных признаков, характеризующих мясную продуктивность заводского стада, наилучшая продуктивность установлена у животных генетических групп быковпроизводителей Дайс 10М, Таймлайн ТR, Революшин 4Ru.
- 2. Удлинение срока испытания до 18-месячного возраста объективно отражает биологическую ценность животных по долгорослости, 46 бычков (71,8%) от общего поголовья показали среднесуточный прирост живой массы 1000 г и более, что позволяет получать откормочных животных с разной интенсивностью роста и для разных технологических сроков выращивания
- 3. Основным показателем при оценке быков-производителей является высокая адаптационная племенная ценность, способность быка к спариванию определяется количеством коров, успешно осемененных в случной сезон. Выбираются быки-производители, имеющие индекс адаптационной племенной ценности (ИАПЦ) от 85 баллов для воспроизводства племенного стада.
- 4. О высоких защитных свойствах крови представителей Уральского герефорда свидетельствовал повышенный на 31,0-52,2 % уровень лейкоцитов в крови по сравнению со сверстниками импортной селекции. Более интенсивный азотистый обмен регистрировался у представителей отечественного типа герефордской породы, что выражалось в превосходстве по содержанию белка на 1,06-4,18 г/л (1,12-4,58 %) и альбуминовой фракции на 1,00 г/л (2,24 %) относительно аналогов импортной селекции. Однако более интенсивное переаминирование аминокислот установлено у продолжателей американских и канадских быков-производителей, о чём указывают повышенная активность АЛТ и АСТ.
- 5. Резистентность организма в значительной степени определяется влиянием тиреоидных гормонов на обмен веществ и состояние органов и тканей.

Наивысший уровень трийодтиронина в крови отмечался у бычков канадского происхождения, которые превосходили сверстников на 0,11-0,27 нмоль/л (4,62-12,16 %). Уральский герефорд отличался максимальной концентрацией тироксина — на 11,61-17,98 нмоль/л (8,73-14,20 %), превышая показатели сверстников импортной селекции.

- 6. Генотипирование по генам гормона роста и тиреоглобулина и последующий убой герефордских бычков позволили изучить формирование мясной продуктивности и качества говядины во взаимосвязи с генотипом. Значительное влияние полиморфизма GH L127V отмечалось на массу туши (P<0,05) и аминокислотный состав мяса. Полиморфизм TG5 (c.-422C>T) оказывал значительное (P<0,05) влияние на дифференциацию бычков по соотношению полиненасыщенных и насыщенных жирных кислот. Генетическая изменчивость бычков по генам GH и TG5 может быть использована для улучшения как количественных, так и качественных показателей мясной продуктивности.
- 7. Выявлены значительные ассоциации между полиморфизмами генов GH и TG5 и анатомо-морфологической оценкой туш, способностью преобразовывать кормовой протеин и энергию в питательные вещества съедобной части тела крупного рогатого скота. Аллель V гена GH продемонстрировал значительное влияние на высокий выход мякоти, низкую интенсивность жирового обмена по сравнению с гомозиготными носителями LL-генотипа. Аналогичным образом, генотип TT гена TG5 показал корреляцию с вариациями в отложении жира в туше. Кроме того, выявлена взаимосвязь на уровне тенденции между генетическими вариациями гена GH и площадью мышечного глазка, содержанию протеина в теле и эффективностью использования кормового протеина на синтез съедобных частей тела.
- 8. Высокий уровень валового прироста живой массы за периоды выращивания способствовал снижению себестоимости продукции у бычков с генотипом VV по гену GH была на 447,87 руб. и на 1077,73 руб. Выручка при реализации молодняка VV-генотипа на мясо была выше на 4800,00 15120,00 руб. Уровень рентабельности при выращивании бычков перспективного для селекции генотипа была выше на 2,4-5,8%. Наименьшей рентабельностью характеризовались бычки с LL-генотипом 10,90%.

5. Предложения производству

- 1. При совершенствовании биологических и технологических качеств продуктивности мясного скота целесообразно оценивать быков-производителей по адаптационной племенной ценности, что позволяет отбирать для воспроизводства животных с высокими репродуктивными качествами.
- 2. Проведение генотипирования и отбор носителей желательного генотипа по генам GH и TG5 при интенсивном выращивании до 21-месячного возраста позволяет дополнительно получать в расчете на 1 голову 33-45 кг мяса и повысить рентабельность производства говядины 2,0-6,0%.

6. Перспективы дальнейшей разработки темы

Дальнейшее развитие популяции герефордского скота на Южном Урале должно быть сосредоточено на следующих направлениях:

- 1) Совершенствование методов внутрипородной селекции с внедрением мониторинга генетической структуры заводских стад;
- 2) Необходимо расширить обрабатываемую информацию от быковпроизводителей по показателям адаптационной племенной ценности и генотипа по генам GH и TG5.

Список опубликованных работ по теме диссертации Статьи, опубликованные в изданиях из перечня, установленного ВАК при Министерстве науки и высшего образования Российской Федерации:

- 1. **Сафронова А.А.**, Джуламанов К.М., Сурундаева Л.Г. Генетическая оценка бычков по собственной продуктивности // Животноводство и кормопроизводство. 2022. Т. 105. № 4. С. 71-78.
- 2. Джуламанов К.М., **Сафронова А.А.**, Платонов С.А., Кизаев М.А. Оценка генотипа герефордского скота по племенным и продуктивным качествам // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова. 2022. № 4 (69). С. 63-69.
- 3. **Сафронова А.А.**, Джуламанов К.М., Герасимов Н.П., Дубовскова М.П. Гематологические параметры и гормональный профиль герефордских бычков разных генетических групп // Животноводство и кормопроизводство. 2023. Т. 106. № 2. С. 43-51.
- 4. **Сафронова А.А.**, Джуламанов К.М., Герасимов Н.П. Разработка нового способа оценки и отбора быков-производителей на основе индексной оценки // Пермский аграрный вестник. 2024. № 3 (47). С. 126-133.
- 5. **Сафронова А.А.** Формирование мясной продуктивности и качества мяса у герефордских бычков разных генотипов // Животноводство и кормопроизводство. 2024. Т. 107, № 2. С. 61-70.

Публикации в других научных изданиях и в материалах научнопрактических конференций

- 6. **Lapshina A.A.**, Dzhulamanov K.M., Kolpakov V.I., Kizaev M.A., Dzhulamanov Ye.B. Improving the selection of cows according to a complex evaluation indicator // IOP Conference Series: Earth and Environmental Science. 2021. C. 22061.
- 7. Лондарев М.Е., **Сафронова А.А.** Генетическая структура уральской популяции герефордской породы // Зоотехния сегодня приоритеты и перспективы развития: материалы междунар. науч.-практ. конф. Оренбург: издво ФГБНУ ФНЦ БСТ РАН, 2025. С. 125-130.
- 8. **Сафронова А.А.** Сравнительная характеристика коров разных генотипов // Зоотехния сегодня приоритеты и перспективы развития: материалы междунар. науч.-практ. конф. Оренбург: изд-во ФГБНУ ФНЦ БСТ РАН, 2025. С. 146-150.

Патенты Российской Федерации на изобретения

9. **Лапшина А.А.**, Джуламанов К.М., Лебедев С.В., Рахматуллин Ш.Г. Способ отбора быков мясных пород скота с адаптационной племенной ценностью / Патент на изобретение RU 2779936 C1, 15.09.2022. Заявка № 2021132188 от 03.11.2021.

Биологические и хозяйственные особенности скота герефордской породы разных генотипов

4.2.4. Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат

диссертации на соискание учёной степени кандидата биологических наук

Подписана в печать 24.10.2025 г Формат 60х90/16. Объем - 1,0 усл. печ. л Тираж 100 экз, Заказ № 15
