На правах рукописи

Силин Дмитрий Алексеевич

Обмен веществ и продуктивность кур-несушек при использовании в рационе пробиотико-минерального комплекса

4.2.4. Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» и Федеральном государственном бюджетном образовательном учреждении высшего образования «Оренбургский государственный университет».

Научный руководитель:

доктор биологических наук, доцент

член-корреспондент РАН

Лебедев Святослав Валерьевич

Официальные оппоненты:

Лебедева Ирина Анатольевна, доктор биологических наук, доцент. ФГБНУ «Уральский федеральный аграрный научноисследовательский центр Уральского отделения лаборатория Российской академии наук», ветеринарных технологий и биоинжиниринга, ведущий научный сотрудник;

Багно Ольга Александровна, доктор сельскохозяйственных наук, доцент, ФГБОУ ВО "Кузбасский государственный аграрный университет имени В.Н. Полецкова", кафедра зоотехнии, профессор.

Ведущая организация:

Федеральное государственное бюджетное научное учреждение Федеральный научный центр «Всероссийский научно-исследовательский и технологический институт птицеводства».

Защита диссертации состоится 26 декабря 2025 года в 13.00 часов на заседании диссертационного совета 24.1.252.01 на базе ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» по адресу: 460000, г. Оренбург, ул. 9 Января, 29, тел. 8(3532) 30-81-70.

С диссертацией можно ознакомиться в библиотеке ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук» и на сайте: http://www.fncbst.ru, с авторефератом - на сайтах http://www.fncbst.ru и <a hre

Автореферат разослан	<<>>>	2	2025	Γ.

Учёный секретарь диссертационного совета

But-

Завьялов Олег Александрович

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Совершенствование отрасли яичного птицеводства направлено на разработку и реализацию стратегии повышения продуктивности кур, их сохранности, снижения себестоимости и безопасности производимых продуктов. Это достигается путем обеспечения организма комплексами активных веществ, повышающих иммунитет и продуктивные показатели (Кавтарашвили А.Ш., 2021; Фисинин В.И., 2025).

Пробиотики улучшают здоровье кишечника, повышают стабильность кишечной флоры и подавляют колонизацию патогенов. Они увеличивают яйценоскость за счет конверсии корма, регуляции колонизации симбиотических бактерий, увеличения количества кишечных бокаловидных клеток и стимулирования кишечного Т-клеточного иммунитета (Jadhav K. et al., 2015) на фоне повышения потребности организма в микронутриентах. Предполагается, что совместное применение пробиотиков и микроэлементов в различной форме позволит повысить роль пробиотических веществ, нивелировать погрешности в кормлении, тем самым оказывая благоприятное влияние на продуктивность, обменные процессы в организме птицы, формирование минерального и метагеномного профиля в кишечнике, что в дальнейшем может повысить рентабельность отрасли птицеводства.

Степень разработанности темы. На современном этапе проводятся комплексные исследования для разработки отечественных форм и рецептов премиксов и их ингредиентов, оказывающих стимулирующее действие на продуктивность и сохранность животных. К альтернативным веществам можно отнести пробиотики, пребиотики, синбиотики, лекарственные растения и органические кислоты, имеющие разнонаправленное действие на иммунитет и устойчивость к патогенным бактериям (Alsherify S.M., Hassanabadi A., 2024).

Минеральный состав является неотъемлемой частью рациона, который влияет на здоровье и продуктивность птицы. Некоторые минералы являются компонентами ферментов, катализирующих биохимические реакции, включая производство энергии, обмен веществ, передачу нервных импульсов, сокращение мышц и проницаемость клеток (Егоров И.А., 2024). Известно, что в корма для сельскохозяйственной птицы добавляют неорганические формы микроэлементов (сульфатные или оксидные соли), которые в больших количествах выводятся в окружающую среду в связи с их низкой биодоступностью и усвояемостью. Новые источники минеральных веществ – хелатные комплексы, ультрадисперсные формы и наночастицы – показали более высокую биодоступность в рационах птицы (Сизова Е.А., 2019, 2021).

В связи с вышесказанным, требуется более подробное изучение влияния биологически активных веществ и различных форм микроэлементов на продуктивность и обмен веществ птицы.

Цель и задачи исследований.

Целью исследования, выполняемого в соответствии с Федеральной научнотехнической программой развития сельского хозяйства на 2017-2030 годы (Постановление Правительства РФ от 25 августа 2017 года N 996), тематическим планом научно-исследовательских работ (FNWZ-2024-0003, №124100900282-5)

Федерального научного центра биологических систем и агротехнологий РАН по программе фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021-2030 годы), при поддержке РНФ «Разработка системной диагностики и коррекции элементозов в зависимости от генетических ресурсов сельскохозяйственных животных» (2021-2023 годы, №21-16-00009) и гранта на проведение крупных научных проектов по приоритетным направлениям научнотехнического развития (№ 075-15-2024-550) являлось изучение влияния пробиотических и минеральных веществ в составе рациона на обмен веществ, продуктивность, элементный состав организма и микробиом кишечника курнесушек.

В соответствии с указанной целью были поставлены следующие задачи:

- 1. Оценить влияние биологически активных веществ на зоотехнические и гематологические показатели кур-несушек.
- 2. Изучить влияние биологически активных веществ на обмен веществ, яичную продуктивность, качество яиц и микробиом кишечника кур-несушек.
- 3. Оценить влияние пробиотика в комплексе с различными формами микроэлементов на обмен веществ, морфо-биохимические и продуктивные качества яичных кур.
- 4. Изучить экономическую эффективность использования в составе рациона пробиотико-минерального комплекса в условиях промышленного птицеводства.

Научная новизна. Впервые исследовано совместное применение пробиотика в составе рациона кур-несушек с хелатными и ультрадисперсными формами металлов в качестве катализаторов морфо-биохимических процессов и продуктивных качеств яичных кур; получены новые знания об особенностях влияния биоминерального комплекса на метаболизм и метагеномный состав кишечника. Дана производственная оценка и рассчитана экономическая эффективность введения комплекса пробиотика и микроэлементов в хелатной и ультрадисперсной форме в рацион сельскохозяйственной птицы.

Теоретическая значимость работы заключается в обосновании использования в рационе яичных кур пробиотико-минерального комплекса. Установлена определяющая роль пробиотических и различных форм минеральных веществ в формировании элементного состава и метагеномного профиля кишечника кур. Подтверждена гипотеза о модулирующем действии нутриентов-катализаторов обменных процессов на формирование продуктивных качеств за счет оптимизации качественного состава микробиоты желудочно-кишечного тракта кур-несушек.

Практическая значимость состоит в выявлении оптимальной дозировки пробиотика с комплексом микроэлементов в рационе кур-несушек для повышения продуктивных показателей птицы, рентабельности производства за счет оптимизации обмена веществ и качества получаемой продукции.

Методология и методы исследования. Теоретическая часть работы состояла в анализе литературных источников по проблеме исследований, подборке и реализации методик, проведения комплексных исследований, получения результатов с использованием методов зоотехнического и биохимического анализов с

применением современных методов математической обработки и статистического анализа.

Основные положения, выносимые на защиту:

- 1. Использование в составе рациона пробиотического препарата «Лактобифадол-Форте» в оптимальной дозировке оказывает стимулирующее действие на обмен веществ, морфологические показатели и биологическую ценность продукции.
- 2. Формирование продуктивных качеств кур-несушек зависит от дозы и комплекса вспомогательных минеральных компонентов рациона.
- 3. Совместное применение пробиотика и минерального комплекса в хелатной и ультрадисперсной форме имеют разнополярное влияние на обмен веществ, физиолого-биохимические показатели и яичную продуктивность кур-несушек.
- 4. Использование биоминерального комплекса в рационе кур-несушек проявляется в увеличении яичной продуктивности и рентабельности производства птицеводческой продукции.

Степень достоверности И апробации полученных результатов подтверждается результатами комплексных исследований на достаточном поголовье птицы, включающих лабораторный анализ на современном оборудовании и стандартизированных методиках, материалах и методах. Цифровой материал обработан с применением методов статистики, что обеспечило достоверность выводов и предложений производству. Основные результаты доложены и обсуждены на расширенном заседании лаборатории прецизионных технологий в сельском хозяйстве ФНЦ БСТ РАН. Результаты работы представлены в материалах Всероссийской молодежной научно-практической конференции (Оренбург, 2022), на Всероссийской научно-практической конференции «Безопасность и качество сельскохозяйственного сырья и продовольствия-2022» (Москва, 2022), в материалах Международной научно-практической конференции «Перспективы устойчивого развития аграрно-пищевых систем на основе рационального использования региональных генетических и сырьевых ресурсов» (Волгоград, 2023), в материалах II Всероссийской молодежной научно-практической конференции "Наука будущего – наука молодых" (Оренбург, 2023), в материалах Всероссийской научно-практической конференции «Актуальные вопросы и инновации в животноводстве» (Оренбург, 2024), в материалах Международной научно-практической конференции «Зоотехния сегодня - приоритеты и перспективы развития» (Оренбург, 2025), в материалах XIX Международной научно-практической конференции «Научные основы повышения продуктивности, здоровья животных И продовольственной безопасности» (Краснодар, 2025).

Реализация результатов исследований. Апробация полученных результатов исследований проведена на базе ЗАО «Птицефабрика Оренбургская» Оренбургской области.

Публикации результатов исследований. По теме диссертационной работы опубликовано 13 научных работ, из них 4 в изданиях, рекомендованных ВАК РФ.

Объём и структура работы. Диссертация представлена на 193 страницах печатного текста, содержит 49 таблиц, 23 рисунка. Состоит из введения, обзора

литературы, материалов и методов исследований, глав с изложением основных результатов, обсуждения полученных результатов, выводов, предложений производству.

2 РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ

2.1 Материалы и методы исследования

Исследования проводились в период с 2022 по 2025 год с использованием современной лабораторной базы Испытательного центра ФНЦ БСТ РАН. Производственная проверка проводилась на производственной площадке ЗАО «Птицефабрика Оренбургская» (www.pfo56.ru).

Целью первой серии исследований является сравнительное изучение биологических эффектов при введении в рацион кур-несушек пробиотических и фитобиотических препаратов. Для проведения исследований методом группаналогов из 110-суточных кур-несушек сформировали 4 группы по 30 голов в каждой. Контрольная группа в период со 111 по 210 сутки получала основной рацион (ОР), который по питательности соответствовал рекомендациям ВНИТИП (2015). В ОР опытных групп включали за счет зерновой части (0,1–0,15%) биологически активные вещества согласно представленной схеме эксперимента (таблица 1).

Таблица 1. Схема I экспериментального исследования

Of our		Период опыта		
Объект исследования	Группа	подготовительный (90-110 сут.)	учетный (111-210 сут.)	
Куры-несушки кросса «Хайсекс Браун» (n=120)	контрольная		OP	
	I опытная	Основной рацион	OP+«Лактобифадол-Форте» 1,5 г/кг	
	II опытная	(OP)	OP+«Ветом 1.1» 1,5 г/кг	
	III опытная		ОР+«Дигестаром® П.Е.П. 1000» 1 г/кг	

Примечание: ОР – основной рацион ПК-1 по рекомендациям ВНИТИП, 2015;

Характеристика препаратов: «Лактобифадол-Форте» (БФ «Компонент», г. Бугуруслан) содержит смесь *Lactobacillaceae* и *Bifidobacteriaceae*; «Ветом 1.1» (ООО НПФ «Исследовательский центр», п. Кольцово) включает смесь микроорганизмов *Bacillus subtilis*; «Дигестаром® П.Е.П. 1000» (ООО «Биомин», г. Москва) содержит анетол, карвакрол, лимонен.

На втором этапе исследований методом групп-аналогов из 120-суточных курнесушек были сформированы 5 групп по 30 голов в каждой. Продолжительность эксперимента составила 180 суток (табл. 2).

Таблица 2. Схема II экспериментального исследования

Объект		Период опыта		
	Группа	подготовительный	учетный	
исследования		(90-120 сут.)	(121-300 сут.)	
Куры-	контрольная		OP	
несушки	I опытная		OP+«Лактобифадол-Форте» 1,5 г/кг +МЭ	
кросса	II опытная	Основной рацион	ОР+«Лактобифадол-Форте» 1,0 г/кг+МЭ	
«Хайсекс	III опытная	(OP)	OP+«Лактобифадол-Форте» 0,5 г/кг+МЭ	
Браун» (n=150) IV опытная			CM+qO	

Примечание: ОР – основной рацион ПК-1 по рекомендациям ВНИТИП, 2015;

МЭ – комплекс хелатных форм микроэлементов.

Комплекс хелатных форм микроэлементов состоял из глицината меди в дозировке 20 мг/кг корма, глицината железа -200 мг/кг, глицината марганца -90 мг/кг, селена метионина -40 мг/кг и цитрата цинка -200 мг/кг.

Для проведения III экспериментального исследования использовали пробиотик «Лактобифадол-Форте» и аналогичный комплекс микроэлементов (Cu, Fe, Mn, Zn) в ультрадисперсной форме (УДЧ) и селенита натрия. С этой целью методом группаналогов из 180-суточных кур-несушек были сформированы 5 групп по 30 голов. Продолжительность эксперимента составила 60 суток (табл. 3).

Таблица 3. Схема III экспериментального исследования

Объект		Период опыта		
исследования	Группа	подготовительный (150-180 сут.)	учетный (181-240 сут.)	
	контрольная		OP	
Куры- несушки	I опытная		OP+«Лактобифадол-Форте» 1,5 г/кг корма+МЭ	
кросса «Хайсекс	II опытная	Основной рацион (OP)	OP+«Лактобифадол-Форте» 1,0 г/кг корма+МЭ	
Браун» (n=150)	1 OTT TOTAL		OP+«Лактобифадол-Форте» 0,5 г/кг корма+МЭ	
	IV опытная		OP+MЭ	

Примечание: OP – основной рацион ПК-1 по рекомендациям ВНИТИП, 2015; OP+MЭ – основной рацион с комплексом ультрадисперсных частиц микроэлементов.

УДЧ производились в «Лаборатории синтеза наноструктур» ФГБОУ ВО «Оренбургский государственный университет» (рук. Летута С.Н.).

Комплекс УДЧ микроэлементов состоял из Cu (50 нм) в дозировке 4,8 мг/кг корма, Fe_3O_4 (80 нм) - 44 мг/кг, Mn (50 нм) - 19,8 мг/кг, ZnO (40 нм) - 20 мг/кг и Na_2SeO_3-260 мкг/кг.

Для приготовления комбикорма использовали метод ступенчатого смешивания. Содержание птицы проводилось согласно «Руководству по работе с птицей кросса Хайсекс Браун» (2007). Кормление осуществлялось 1 раз в сутки, поение вволю из ниппельных поилок.

Определение переваримости питательных веществ проводилось в соответствии с «Методическими рекомендациями по проведению научных исследований по кормлению сельскохозяйственной птицы» и методикой ВНИТИП (Фисинин В.И. и др., 2013). Птица содержалась в типовых клетках для кур-несушек БН-1 («Стимул-Инк»).

Динамика ростовых показателей оценивалась путем индивидуального взвешивания до кормления (± 1 г) каждые 2 месяца. Поедаемость, расход корма и яичная продуктивность фиксировались ежедневно. Морфологические показатели яиц определялись по общепринятым методикам ВНИТИП (2013).

Энергетический обмен организма характеризовался путем определения значения валовой и обменной энергии по уравнениям регрессий, предложенных А.П. Калашниковым и др. (1985). Анатомическая разделка и оценка химического состава проводились по методике ВНИТИП (2004).

Химический состав помета, кормов, тканей тела и яиц кур-несушек определялся по стандартизированным методикам: ГОСТ 31640-2012, ГОСТ 32044.1.2012, ГОСТ 13496.15-97, ГОСТ 51479-99, ГОСТ 23042-86, ГОСТ 25011-81, ГОСТ Р 53642-2009, ГОСТ 31469-2012.

Элементный анализ биосубстратов проводился методами атомно-эмиссионной спектрометрии и масс-спектрометрии с индуктивно связанной плазмой (Optima 2000 V, «Perkin Elmer», США) и масс-спектрометрии (Elan 9000, «Perkin Elmer», США).

Отбор крови у птиц осуществлялся из подкрыльцовой вены в конце учетного периода. Морфологические показатели крови определялись на гематологическом анализаторе URIT-2900 Vet Plus (URIT Medical Electronic Co., Китай). Биохимический анализ проводился на анализаторе CS-T240 («Dirui Industrial Co., Ltd», Китай) с использованием наборов «ДиаВетТест» (Россия).

Для метагеномного секвенирования образцы полостного содержимого слепого кишечника кур-несушек помещались в стерильные микропробирки типа «эппендорф» («Nuova Aptaca S.R.L.», Италия). Анализ микрофлоры осуществлялся методом метагеномного секвенирования (Illumina MiSeq, «Illumina», США).

Статистический анализ выполняли с использованием программного пакета Statistica 10.0 («StatSoftInc.», США) и Microsoft Excel и включал расчет среднего значения (М) и стандартной ошибки среднего (±SEM). Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Уровень значимой разницы был установлен на р≤0,05.

2.2 Результаты первого экспериментального исследования

2.2.1 Корма и зоотехнические показатели кур-несушек

На основании оценки зоотехнических показателей выращивания кур-несушек (табл. 4) установлено превосходство по средней массе яиц на 5,9% (р≤0,05), 4,16% (р≤0,05) и 7,6% (р≤0,05) в I, II и III опытных группах соответственно при сравнении с контрольной. По яйценоскости I и III опытные группы характеризовались превосходством на 8,9% и 7,8% при снижении затрат корма на 10 яиц на 13,5% и 4,7% соответственно, и на 0,67% во II опытной группе. При пересчете на 1 кг яичной массы в I, II и III опытных группах установлено снижение затрат корма на 17,8%, 3,5% и 11,2% соответственно, что объясняется более высокой яйценоскостью и средней массой яйца в опытных группах.

Таблица 4. Зоотехнические показатели выращивания кур-несушек (111-210 сутки)

Показатель	Группа					
Показатель	контрольная	I опытная	II опытная	III опытная		
Сохранность поголовья, %	100	100	100	100		
Яйценоскость кур, шт.	90	98	90	97		
Средняя масса яйца, г	51,61±0,43	54,65±0,46*	53,76±0,57*	55,52±0,45*		
Затраты корма, кг:						
на 10 яиц	1,48	1,28	1,49	1,41		
на 1 кг яичной массы	2,86	2,35	2,76	2,54		

Примечание: *р≤0,05 – опытные группы по сравнению с контрольной

Таким образом, по большинству оцениваемых зоотехнических показателей положительным действием характеризовался препарат «Лактобифадол-Форте», на фоне снижения эффекта во II опытной группе, получавшей препарат «Ветом».

2.2.2 Переваримость питательных веществ рациона

Оценка переваримости питательных веществ на конец учетного периода установила достоверное увеличение переваримости сухого вещества в I опытной группе на 4,4% ($p \le 0,05$), сырого жира – на 2,38% ($p \le 0,05$), сырой клетчатки – на 3,95% ($p \le 0,05$) и сырого протеина – на 3,34%. Во II опытной группе отмечалось снижение относительно контрольных значений переваримости сухого вещества на 2,8%, органического – на 1,5%, сырого протеина – на 3,4% и сырой клетчатки – на 3,33%. III опытная группа превосходила контрольную по переваримости сырого жира на 4,3% ($p \le 0,05$).

2.2.3 Качественные показатели яиц кур-несушек

Оценка качественных показателей яиц установила, что I и III опытные группы достоверно превосходили контрольную группу по массе белка на 9% ($p\le0,05$) и 5,7% ($p\le0,05$), массе желтка — на 12,1% ($p\le0,05$) и 7,6% ($p\le0,05$) соответственно. Превосходством по массе скорлупы на 14,9% ($p\le0,05$) характеризовалась III опытная группа. Индекс формы яйца, белка и желтка в I опытной группе достоверно превышал показатели контрольной группы на 3,35% ($p\le0,05$), 3,2% ($p\le0,05$) и 5,95% ($p\le0,05$) соответственно. Толщина скорлупы была достоверно выше на 4,5% ($p\le0,05$) в II опытной группе, на 3% ($p\le0,05$) во II опытной группе и на 6% ($p\le0,05$) в III опытной группе.

2.2.4 Морфологические показатели крови кур-несушек

Показатели крови всех исследуемых групп находились в границах физиологической нормы. Введение биоактивных веществ не оказало негативного влияния на морфологические показатели крови кур-несушек.

2.2.5 Биохимические показатели крови кур-несушек

Оценка биохимических показателей крови показала стимуляцию углеводного и белкового обмена на фоне увеличения глюкозы, общего белка и альбумина. Наибольший положительный эффект демонстрировала I опытная группа, получавшая рацион с пробиотиком «Лактобифадол-Форте».

2.2.6 Элементный состав биосубстратов кур-несушек

На основании проведенного исследования элементного состава были сформированы элементные профили организма птицы (в сравнении с контрольной группой): для I группы $\frac{\uparrow Cu,Al,Pb}{\downarrow Co,Ni}$, для II группы $\frac{\uparrow K,Mg,Na,Cr,Cu,Ni,Zn,Al,Pb,Sr}{\downarrow Ca,Se}$, для III группы $\frac{\uparrow Ca,K,Mg,Na,Cr,Cu,Ni,Zn,Al,Pb,Sr}{\downarrow Ca,Se}$, для III группы

Особенности содержания химических элементов в помете кур-несушек выражены в элементных профилях (в сравнении с контрольной группой): для I группы $\frac{\uparrow Co,Cr,Cu,Mn,Cd,Pb}{\downarrow Na}$, для II группы $\frac{\uparrow P}{\downarrow Ca,Na,Co}$, для III группы $\frac{\uparrow K,Mg,P}{\downarrow Ca,Na}$.

2.2.7 Микробиальный профиль кишечника кур-несушек

В ходе анализа микробиома слепого отдела кишечника отмечались положительные изменения в группе, получавшей «Лактобифадол-Форте»: увеличилось содержание облигатной микрофлоры желудочно-кишечного тракта

птицы (Lactobacillaceae и Bifidobacteriaceae) с одновременным уменьшением численности бактерий патогенной и условно-патогенной группы (Clostridiaceae и Enterobacteriaceae). Введение пробиотика «Ветом» также сопровождалось увеличением содержания облигатной микрофлоры желудочно-кишечного тракта птицы (Lactobacillaceae и Bifidobacteriaceae) и уменьшением численности бактерий патогенной и условно-патогенной группы (Clostridiaceae и Enterobacteriaceae), а также целлюлозоразрушающих бактерий (Oscillospiraceae и Lachnospiraceae). Введение препарата «Дигестаром» привело к увеличению содержания облигатной микрофлоры желудочно-кишечного тракта птицы (Lactobacillaceae, Oscillospiraceae и Bifidobacteriaceae) и уменьшению численности бактерий патогенной и условнопатогенной группы (Clostridiaceae и Enterobacteriaceae).

2.3 Результаты второго экспериментального исследования

2.3.1 Корма и зоотехнические показатели кур-несушек

Оценка зоотехнических показателей за учетный период 121-300 суток показала, что поедаемость в I опытной группе была ниже на 0.8%, а во II опытной выше — на 7.1% (p ≤ 0.05). Яйценоскость за весь период эксперимента была выше в I опытной группе на 3.5% (p ≤ 0.05) и в IV опытной группе на 1.2% (табл. 5).

Таблица 5. Зоотехнические показатели выращивания кур-несушек (121-300 сутки)

Показатели	Группа					
Показатели	контрольная	I опытная	II опытная	III опытная	IV опытная	
Сохранность поголовья, %	100	100	100	100	100	
Яйценоскость на несушку, шт.	170	176	168	169	172	
Интенсивность яйценоскости, %	94,2	97,7	93,6	93,8	95,7	
Средняя масса яйца, г	54,7±0,36	56,3±0,35*	55,3±0,34	55,9±0,36*	54,5±0,34	
Поедаемость корма, г/гол/сут	126±0,99	125±0,96	135±1,24*	128±1,11	123±1,00	
Затраты корма, кг:						
на 10 яиц	1,34	1,28	1,44	1,37	1,30	
на 1 кг яичной массы	2,45	2,27	2,49	2,35	2,27	

Примечание: *р≤ 0,05 при сравнении опытных групп с контрольной

Средняя масса яиц достоверно превышала значения контрольной группы: в I опытной – на 2,9% ($p\le0,05$) и в III опытной – на 2,2% ($p\le0,05$). Самые низкие затраты корма на 1 кг яичной массы были в I и IV опытных группах (2,27 кг), что превосходило показатель контрольной группы на 7,3%. На 10 яиц в I опытной группе требовалось 1,28 кг корма, в контрольной группе – 1,34 кг.

Оценка зоотехнических показателей показала превосходство по яйценоскости, массе яиц и конверсии корма в I опытной группе, которой в рацион вводились 1,5 г/кг пробиотика «Лактобифадол-Форте» совместно с комплексом хелатных микроэлементов.

2.3.2 Переваримость питательных веществ рациона

Оценка переваримости основного рациона в возрасте 300 суток показала достоверное снижение переваримости сухого вещества в I и II опытных группах на 2,1% (p $\leq 0,05$) и 3,3% (p $\leq 0,05$) соответственно; органического – в I, II и IV опытных группах на 2,2% (p $\leq 0,05$), 3,2% (p $\leq 0,05$) и 0,8% (р $\leq 0,05$) соответственно. Переваримость сырого протеина во II и III группах превышала контрольные значения

на 3,6% ($p\le0,05$) и 3,4% ($p\le0,05$). Переваримость сырой клетчатки была выше в I и III опытных группах на 4,3% и 4,31% соответственно, при снижении переваримости сырого жира в I группе на 5,4% ($p\le0,05$), во II опытной – на 3,2% ($p\le0,05$), в III – на 0,8% ($p\le0,05$) и в IV опытной группе – на 2% ($p\le0,05$).

2.3.3 Качественные показатели яиц кур-несушек

В возрасте 180 суток наблюдалось достоверное увеличение массы белка и желтка в I и II опытных группах с одновременным снижением массы желтка в IV опытной и массы скорлупы в I, II и IV опытных группах. К 240 суткам наблюдался рост массы белка в I и II опытных группах, желтка — в I, II и III опытных группах на фоне снижения массы скорлупы в этих же группах и массы желтка в IV опытной группе. К 300-суточному возрасту отмечалось лишь достоверное увеличение массы белка в I опытной группе и ее снижение в IV опытной (табл. 6).

Таблица 6. Масса составных частей яйца кур-несушек

Показатель		·	Группа					
Показатель	контрольная	I опытная	II опытная	III опытная	IV опытная			
	Вв	озрасте 180 суто	к					
Масса, г:	Macca, Γ:							
белка	26,5±0,33	27,9±0,28*	28,8±0,68*	26,3±0,61	26,7±0,41			
желтка	14,3±0,18	15,4±0,15*	15,5±0,37*	$13,9\pm0,32$	13,6±0,21*			
скорлупы	6,81±0,08	6,24±0,06*	6,44±0,15*	$6,66\pm0,15$	6,20±0,09*			
	Вв	озрасте 240 суто	к					
Масса, г:								
белка	30,8±0,15	31,8±0,30*	32,5±0,30*	31,5±0,34	31,0±0,16			
желтка	16,7±0,08	18,1±0,17*	17,6±0,16*	18,5±0,20*	16,3±0,08*			
скорлупы	$8,80\pm0,04$	7,87±0,07*	7,55±0,07*	7,87±0,09*	8,76±0,04			
	Вв	озрасте 300 суто	к					
Масса, г:								
белка	33,42±0,14	34,55±0,19*	32,77±0,33	33,06±0,32	32,59±0,30*			
желтка	15,70±0,55	16,19±0,09	15,92±0,16	15,96±0,15	15,19±0,14			
скорлупы	$10,35\pm0,04$	$9,66\pm0,05$	$9,41\pm0,09$	$10,54\pm0,10$	$10,42\pm0,10$			

Примечание: *р≤0,05, при сравнении опытных групп с контрольной

На основании химического анализа состава яиц дозозависимый эффект проявлялся снижением содержания жира в І опытной группе на 12,1% (p $\leq 0,05$), при увеличении в ІІІ и IV опытных группах на 8% (p $\leq 0,05$) и 12% (p $\leq 0,05$) соответственно. Содержание протеина в яйце было достоверно выше в І, ІІ и IV опытных группах на 2,1% (p $\leq 0,05$), 5% (p $\leq 0,05$) и 25,5% (р $\leq 0,05$) соответственно. В ІІІ и IV опытных группах отмечалось достоверно большее количество витамина А на 23,2% (р $\leq 0,05$) и 35,4% (р $\leq 0,05$), а витамина Е – на 24% (р $\leq 0,05$) и 27,4% (р $\leq 0,05$) соответственно.

Таким образом, введение пробиотика в дозе 0,5 г/кг и комплекса микроэлементов выражалось в увеличении содержания жира, протеина и витаминов.

2.3.4 Морфологические показатели крови кур-несушек

Оценка морфологических показателей крови не установила негативного влияния биоминерального комплекса на морфологические показатели крови курнесушек.

2.3.5 Биохимические показатели крови кур-несушек

На фоне использования пробиотико-минерального комплекса был установлен стимулирующий эффект на показатели углеводного и жирового обменов. Наибольший эффект получен в группе, получавшей 0,5 г/кг пробиотика совместно с комплексом хелатных форм Cu, Fe, Mn, Se и Zn.

2.3.6 Содержание химических веществ и энергии в организме птицы

В результате анализа химического состава организма птицы было установлено накопление протеина во II, III и IV опытных группах на 7,6–12,8%, жира в I, II и III опытных группах на 29,9% ($p\le0,05$), 20,4% ($p\le0,05$) и 42,3% ($p\le0,05$) соответственно, с превосходством по количеству энергии I опытной группы на 13,2%, II опытной группы на 14,7%, III опытной группы на 27,8% ($p\le0,05$) и IV опытной группы на 14,3% по сравнению с контрольной.

2.3.7 Элементный состав биосубстратов кур-несушек

На основании расчета переваримости химических элементов были сформированы минеральные профили в основные учетные периоды (рис. 1).

I опытная	↑Ca,K,Mg,Na,P,Co,Cr,F e,Mn,Ni,Zn,Al,Cd,Pb,Sr ↓Cu,Se	\uparrow K,Mg,Na,Cr,Ni,Al,Cd \downarrow Se,Sr	$\uparrow K, Cr, Fe, Zn, Pb, Sr \\ \downarrow Ca, Mg, Na, P, Co, Cu, Mn, Ni, Se, Al, Cd$
II опытная	\uparrow Ca,Mg,P,Co,Cr,Ni,Al,Cd,Pb,Sr \downarrow Cu,Zn	\uparrow Mg,Na,Co,Cr,Ni,Cd \downarrow P,Fe,Se,Zn	↑Ca,Co,Fe,Ni,Al,Pb ↓P,Cu,Se,Cd
III опытная	↑Ca,Mg,Na,P,Co,Cr,Fe,Mn ,Ni,Se,Zn,Al,Cd,Pb,Sr ↓Cu	↑Ca,K,Mg,Na,Co,Cr,Cu, Fe,Mn,Ni,Al,Cd,Pb,Sr ↓Se	↑K,Mg,Co,Fe,Mn,Ni,Se,Zn,Pb,Sr ↓Ca,P,Cr,Cu,Al
IV опытная	↑Ca,Mg,Na,P,Co,Cr,Fe,Mn ,Ni,Se,Al,Pb,Sr ↓Cu = 180 суток	↑Ca,Mg,Na,Cr,Cd ↓Fe,Mn,Ni,Se,Zn,Al,Pb □ 240 суток	† Ca,K,Mg,Na,Co,Cr,Cu,Fe, Mn,Ni,Zn,Al,Cd,Pb,Sr 300 суток

Рисунок 1. Разница в переваримости химических элементов кур-несушек в учетные периоды

Введение пробиотико-минерального комплекса сопровождалось увеличением переваримости многих макро- и микроэлементов. При снижении количества пробиотика установлен максимальный эффект.

2.3.8 Содержание химических элементов в яйце

По результатам элементного анализа биосубстратов выявлены зависимости в содержании химических элементов в яйце кур несушек (рис. 2).

I опытная	↑Co,Cr,Ni,Pb,Sr ↓Mn,Cd	$\uparrow Cu,Mn,Cd,Pb,Sr$ $\downarrow K,Cr$	↑Ca,K,Na,Fe,Mn,Al,Cd,
II опытная	↑Co,Cr,Cu,Fe,Ni ↓Mn	↑Fe,Mn,Al,Cd,Pb VCr	↑Cr,Mn,Ni,Al,Pb ↓Sr
III опытная	个Ca,P,Co,Cu,Fe,Ni,Zn,A l,Cd,Pb,Sr	$igwedge Mn, Cd \ igvee K, Cr, Ni$	↑Na,Cr,Cu,Mn,Ni,Al,Pb ↓Fe
IV опытная	\uparrow Ca,Co,Cu,Fe,Ni,Zn,Sr \downarrow Cd	\uparrow Fe,Mn,Sr \downarrow K,Cr,Ni,Al \downarrow 240 COTOK	↑Na,Cr,Mn,Ni,Al,Pb↓S
	■ 180 суто	ч 240 суток	🛛 300 суток

Рисунок 2. Разница в концентрации в яйце химических элементов на разных этапах яйценоскости

2.3.9 Состав микробиома кишечника кур-несушек

Влияние пробиотико-минерального комплекса выражалось в увеличении содержания облигатной микрофлоры желудочно-кишечного тракта птицы (Lactobacillaceae и Bifidobacteriaceae) одновременно с уменьшением численности бактерий патогенной и условно-патогенной группы (Clostridiaceae и

Enterobacteriaceae). При этом введение только минерального элемента (МЭ) сопровождалось увеличением содержания Lactobacillaceae, уменьшением – Bifidobacteriaceae и Enterobacteriaceae.

2.4 Результаты третьего экспериментального исследования

2.4.1 Потребление корма и зоотехнические показатели кур-несушек

Оценка зоотехнических показателей кур-несушек (табл. 7) показала, что в I и III опытных группах было установлено снижение потребления корма на фоне увеличения яйценоскости. В IV опытной группе оцениваемые показатели снижались. По массе яиц превосходством характеризовались I и III опытные группы на 3,3% (р≤0,05) и 0,7% соответственно, при снижении во II и IV группах на 0,2% и 0,9%. Во II опытной группе затраты корма увеличивались как на 1 кг яичной массы (на 8,8%), так и на 10 яиц (на 9,2%), в то время как в остальных опытных группах затраты корма были ниже, чем в контрольной группе, на 1,3−7,0% и 2,3−3,8% соответственно, за исключением III опытной группы, где затраты корма на 10 яиц находились на уровне контроля.

Таблица 7. Зоотехнические показатели выращивания кур-несушек (180-240 сутки)

Поморожания		Группа				
Показатели	контрольная	I опытная	II опытная	III опытная	IV опытная	
Сохранность поголовья, %	100	100	100	100	100	
Яйценоскость на несушку, шт.	58,1	59	58	58,4	58,3	
Интенсивность яйценоскости, %	96,9	98,4	96,7	97,3	97,1	
Средняя масса яиц, г	57,5±0,33	59,4±0,48*	57,4±0,66	57,9±0,45	57,0±0,41	
Поедаемость, г/гол/сут	132±1,21	127±1,00*	137±1,72*	133±1,39	130±1,09	
Затраты корма, кг:						
на 10 яиц	1,31	1,26	1,43	1,31	1,28	
на 1 кг яичной массы	2,28	2,12	2,48	2,27	2,25	

Примечание: *p≤0,05 при сравнении опытных групп с контрольной

2.4.2 Переваримость питательных веществ рациона

Переваримость сухого вещества у кур несушек II опытной группы снизилась на 2,4% (p \le 0,05), при увеличении данного показателя в III опытной группе на 0,9%. Переваримость сырого протеина в I опытной группе была на 1,8% выше контрольных значений, во II опытной – на 3,9% (p \le 0,05), а в III опытной – на 3,5% (p \le 0,05). Переваримость сырого жира во II и III опытных группах была выше на 1,1% (p \le 0,05) и 4% (р \le 0,05) соответственно, а в I и IV опытных, наоборот, отмечалось снижение на 1,5% (р \le 0,05) и 5,3% (р \le 0,05).

Таким образом, на основании показателей переваримости корма лучшим составом характеризовалась III опытная группа, в рацион которой включали 0,5 г/кг пробиотика «Лактобифадол-Форте» и комплекс ультрадисперсных частиц Cu, Fe, Mn, Zn и селенита натрия.

2.4.3 Качественные показатели яиц кур-несушек

Результаты морфологического анализа яиц показали, что наибольшая масса яиц была в I опытной группе $-59,37\pm0,48$, а наименьшая - в IV опытной группе $(56,9\pm0,41)$. Плотность яиц во всех группах составляла 1,06-1,07 г/см³. Отмечалось достоверное превосходство по массе белка у I и II опытных групп на 3,8% (p $\le 0,05$) и 2,5% (р $\le 0,05$) соответственно, при снижении на 0,6% в IV опытной группе. По массе

желтка установлена аналогичная разница. Индекс формы белка в опытных группах практически не отличался от контрольных значений, а индекс формы желтка был выше в I опытной группе на 6,1% (р≤0,05), при снижении во II опытной группе на 0,5%. Во всех опытных группах показатель единиц Хау был выше 80 единиц и превосходил контрольную группу на 4,1−6%.

Оценка химического состава яиц установила, что по концентрации жира II опытная группа превосходила контрольную на 9,9% ($p\le0,05$), III опытная – на 15,7% ($p\le0,05$), и IV – на 22,7% ($p\le0,05$). Количество протеина в яйце было выше в I, II и IV опытных группах на 4,5% ($p\le0,05$), 16,7% ($p\le0,05$) и 10,6% ($p\le0,05$) соответственно, при некотором снижении в III опытной группе. Концентрация протеина во II и IV опытных группах была выше на 16,2% ($p\le0,05$) и 11,1% ($p\le0,05$) соответственно, при снижении на 0,9% ($p\le0,05$) в III опытной группе. Содержание витамина А в желтке в III и IV опытных группах увеличилось на 20,7% ($p\le0,05$) и 33,9% ($p\le0,05$), а витамина Е во II и IV опытных группах — на 18,6% ($p\le0,05$) и 20,3% ($p\le0,05$) соответственно.

Оценка качества яиц показала, что по морфологическим показателям, химическому составу и качественным показателям лидирующую позицию занимала III опытная группа.

2.4.4 Морфологические показатели крови кур-несушек

На основании оценки морфологических показателей крови введение пробиотико-минерального комплекса усиливало обменные процессы в организме, стимулировало лейкогенез и эритропоэз.

2.4.5 Биохимические показатели крови кур-несушек

Оценка биохимических показателей крови отмечает стимулирующее действие пробиотика с УДЧ микроэлементов на углеводный и липидный обмены, а также на содержание железа.

2.4.6 Содержание химических веществ и энергии в организме птицы

Установлено превосходство в содержании протеина в III опытной группе на 8,77%, при снижении в I группе на 7,46%. Количество жира было выше во II опытной группе на 14,8% ($p\le0,05$). Содержание золы достоверно снижалось в I и II опытных группах на 9,27% ($p\le0,05$) и 9,93% ($p\le0,05$) соответственно. Концентрация энергии во II опытной группе достоверно превосходила значения контрольной на 2,93% ($p\le0,05$).

2.4.7 Элементный состав биосубстратов кур-несушек

Для наглядной оценки всех достоверных изменений переваримости химических элементов были сформированы соответствующие профили (в сравнении с контрольной группой): для І группы $\frac{\uparrow K, Mg, Na, Cr, Ni, Zn, Pb}{\downarrow Ca, P, Co, Cu, Mn, Se, Al}$, для ІІ группы $\frac{\uparrow Na, Co, Cr, Ni, Al, Pb}{\downarrow P, Fe, Se}$, для ІІ группы $\frac{\uparrow Ca, K, Mg, Na, Co, Cr, Cu, Fe, Mn, Ni, Se, Al, Cd, Pb, Sr}{\downarrow}$, для IV группы $\frac{\uparrow Ca, K, Mg, Na, Co, Cr, Ni, Cd, Pb, Sr}{\downarrow}$.

Данные изменения подтверждают полученный в предыдущих результатах дозозависимый эффект, при котором во время снижения количества пробиотика в рационе птицы возрастали переваримость питательных веществ и продуктивные показатели.

2.4.8 Содержание химических элементов в яйце.

Введение пробиотико-минерального комплекса выражалось в достоверном увеличении содержания Mg в IV опытной группе, Na в I и II опытных группах. Среди микроэлементов отмечалось достоверное увеличение Co в I опытной группе, Cu в III

опытной группе, Mn во всех опытных группах, Ni в IV опытной группе с одновременным снижением Cr во всех опытных группах.

2.4.9 Состав микробиома кишечника кур-несушек

Изменение микробиома слепой кишки кур-несушек выражалось в увеличении содержания облигатной микрофлоры (Lactobacillaceae, Oscillospiraceae и Bifidobacteriaceae), с уменьшением численности бактерий патогенной и условнопатогенной группы (Clostridiaceae и Enterobacteriaceae). При этом введение МЭ в моноварианте сопровождалось увеличением содержания Bifidobacteriaceae.

2.5 Результаты производственной проверки на курах-несушках

На основании результатов II и III экспериментальных исследований была проведена апробация выбранных вариантов в процессе производственного эксперимента. Для проведения производственной проверки (табл. 8) были сформированы 3 группы кур-несушек (n=300 голов) в возрасте 180 суток. Длительность эксперимента составляла 60 суток. Базовый вариант получал рацион ПК-1. Новый вариант I получал рацион, включающий пробиотик «Лактобифадол-Форте» в дозе $0.5~\rm f/kr$ корма и комплекс микроэлементов: глицината меди – $20~\rm mr/kr$ корма, глицината железа – $200~\rm mr/kr$, глицината марганца – $90~\rm mr/kr$, селена метионина – $40~\rm mr/kr$ и цитрата цинка – $200~\rm mr/kr$). Новый вариант II получал вместе с рационом пробиотик «Лактобифадол-Форте» $0.5~\rm r/kr$ корма и комплекс УДЧ: Cu ($50~\rm hm$) – $4.8~\rm mr/kr$ корма, $\rm Fe_3O_4$ ($80~\rm hm$) – $44~\rm mr/kr$, Mn ($50~\rm hm$) – $19.8~\rm mr/kr$, $\rm Na_2SeO_3$ – $260~\rm mr/kr$ и $\rm ZnO$ ($40~\rm hm$) – $20~\rm mr/kr$.

Таблица 8 – Результаты производственной проверки, n=100

Показатель	Вариант			
Показатель	базовый	новый I	новый II	
Поголовье кур-несушек: на начало	100	100	100	
на конец	100	100	100	
Сохранность поголовья, %	100	100	100	
Живая масса 1 гол. в начале опыта, г.	1725	1723	1726	
Яйценоскость на начальную несушку, шт.	55,86	57,24	57,18	
Интенсивность яйценоскости, %	93,1	95,4	95,3	
Валовое производство яиц, шт.	5586	5724	5718	
Средняя масса яйца, г.	62,1	62,8	62,9	
Выход яичной массы, всего, кг.	347	359	360	
Потребление корма на 1 несушку в сутки, г.	125	122	123	
Потребление корма всего, кг.	750	732	738	
Затраты корма, кг:				
на 10 яиц	1,34	1,28	1,29	
на 1 кг яичной массы	2,16	2,04	2,05	
Производственные затраты, всего, руб.	23020	23285	23339	
Себестоимость 10 яиц, руб.	41,2	40,7	40,8	
Средняя реализационная цена 10 яиц, руб.	51	51	51	
Общая выручка от реализации, руб.	28489	29192	29162	
Прибыль от реализации яиц, руб.	5469	5907	5823	
Рентабельность, %	19,2	20,2	20	

Экономические расчеты показали, что введение пробиотика в дозе 0,5 г/кг корма и комплекса хелатных форм в новом вариантах I сопровождалось повышением яйценоскости кур на 2,5% при увеличении рентабельности на 1% относительно базового рациона. Второй опытный рацион (новый вариант II) с 0,5 г/кг пробиотика совместно с ультрадисперсными формами микроэлементов показал увеличение интенсивности яйценоскости на 2,4% относительно базового варианта, а рентабельность производства повысилась на 0,8%.

ЗАКЛЮЧЕНИЕ

- 1. Наибольшим эффектом на продуктивность и конверсию корма обладал препарат «Лактобифадол-Форте», на основании комплекса показателей: увеличением переваримости сырого протеина на 3,34%, сырого жира на 2,38% (р≤0,05), массы яиц на 5,9% (р≤0,05), конверсии корма на 1 кг яичной массы на 17,8% и морфологических составляющих яйца белка на 9% (р≤0,05) и желтка на 12,1% (р≤0,05), увеличения толщины скорлупы на 4,5% (р≤0,05). В сыворотке крови наблюдалось усиление синтеза общего белка, холестерина и триглицеридов, что подтверждает лучшее использование питательных веществ рациона.
- 2. Использование в рационе «Лактобифадол-Форте» увеличило биодоступность Са, К, Мg, Na и P, а также меди, железа, марганца, селена и цинка, что сопровождалось увеличением численности Lactobacillaceae и снижением содержания облигатной микрофлоры желудочно-кишечного тракта птицы. Введение «Ветома 1.1» и «Дигестарома» сопровождалось увеличением численности Oscillospiraceae и Lachnospiraceae.
- 3. Введение комплекса пробиотика «Лактобифадол-Форте» (0,5 г/кг) и хелатных форм Cu, Fe, Mn, Se и Zn обладало положительным действием на переваримость сырого протеина (3,4% (р≤0,05)) и сырой клетчатки (4,31% (р≤0,05)), массу яиц (2,15% (р≤0,05)) с увеличением конверсии корма на 1 кг яичной массы на 7,3%. Использование пробиотико-минерального комплекса не оказало негативного влияния на морфологические показатели крови на фоне стимулирующего действия на углеводный и липидный обмен, которое было наиболее выражено в группе, получавшей 0,5 г/кг пробиотика совместно с комплексом хелатных форм Cu, Fe, Mn, Se и Zn.
- 4. Оценка влияния на морфологические показатели яиц показала наибольший эффект, который сопровождался увеличением массы желтка на 3,12% и белка на 3,4% (р≤0,05). Дозозависимый эффект выражался в увеличении содержания жира, протеина, витаминов и химических элементов в яйце − Na, Cr, Cu, Mn, Ni, Al, Pb при снижении количества вводимого пробиотика до 0,5 г/кг в составе минерального комплекса.
- 5. Изменение переваримости химических элементов выражалось в увеличении ретенции K, Mg, Co, Fe, Mn, Ni, Se, Zn, Pb, Sr в организме при снижении количества пробиотика до 0,5 г/кг корма на фоне роста филумов Bacillota и Actinomycetota в группе с пробиотиком «Лактобифадол-Форте» и комплексом хелатных форм микроэлементов. На уровне семейства отмечалось снижение численности Clostridiaceae и Enterobacteriaceae с одновременным увеличением Lactobacillaceae,

Oscillospiraceae и Lachnospiraceae в группе, получавшей 0,5 г/кг корма пробиотика и комплекса микроэлементов, которые влияли на лучшее усвоение питательных веществ и элементов.

- 6. Введение пробиотика «Лактобифадол-Форте» в дозе 0.5; 1.0 и 1.5 г/кг корма совместно с комплексом микроэлементов в ультрадисперсной форме сопровождалось увеличением переваримости сырого протеина на 1.8-3.9% (p ≤ 0.05), сырого жира на 1.1-4% (p ≤ 0.05), яйценоскости на 0.2-1.5% и снижении конверсии корма на 0.4%-7% на фоне увеличения массы яиц до 3.3% (p ≤ 0.05). В гематологических показателях у кур-несушек наблюдалось усиление лейкогенеза, эритропоэза, липидного и углеводного обменов.
- 7. Оценка химического состава яиц показала увеличение количества и концентрации жира во всех опытных группах, концентрации протеина, витаминов А и Е в группе с 0,5 г/кг пробиотика «Лактобифадол-Форте» совместно с комплексом ультрадисперсных частиц, что подтверждалось накоплением эссенциальных микроэлементов в яйце.
- 8. Сформированные минеральные профили показывают, что наиболее неоднозначные результаты усвояемости химических элементов были получены в группах с 1,5 и 1 г/кг пробиотика и комплекса УДЧ: отмечалось снижение K, Mg, Na, Со, Сr, Ni, Zn, Al и Рb, в то время как биодоступность таких элементов как Са, K, Mg, Na, Co, Cr, Cu, Fe, Mn, Ni, Se, Al, Cd, Pb, Sr, возрастала при снижении дозировки пробиотика до 0,5 г/кг и, соответственно, отражалась в увеличении численности Lactobacillaceae, Lachnospiraceae, Oscillospiraceae и Bifidobacteriaceae, биологическому действию отличалось действия не OT хелатных форм микроэлементов.
- 9. Экономическая эффективность включения в рацион кур-несушек пробиотика в дозе 0,5 г/кг корма и комплекса хелатных форм в новом варианте I и 0,5 г/кг пробиотика совместно с наноформами микроэлементов во новом варианте II с 180 по 240 суточном возрастном периоде выражалась в увеличении выхода яичной массы на 3,6% и 3,7%, снижением себестоимости на 1,3% и 1%, а также повышением рентабельности производства на 1% и 0,8% соответственно.

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

С целью повышения эффективности яичного производства рекомендуется:

- 1. Введение пробиотического препарата «Лактобифадол-Форте» в дозировке 0,5 г/кг корма с заменой неорганической формы микроэлементов при формировании минерального премикса на хелатные формы: глицината меди в дозировке 20 мг/кг корма, глицината железа в дозировке 200 мг/кг корма, глицината марганца в дозировке 90 мг/кг корма, селенометионина в дозировке 40 мг/кг корма и цитрата цинка в дозировке 200 мг/кг корма, для снижения себестоимости на 1,3% и увеличения рентабельности на 1%.
- 2. Введение пробиотического препарата «Лактобифадол-Форте» в дозировке 0,5 г/кг корма с заменой неорганической формы микроэлементов при формировании минерального премикса на формы ультрадисперсных частиц: меди (50 нм) в дозировке 4,8 мг/кг корма, железа Fe3O4 (80 нм) в дозировке 44 мг/кг корма, марганца

(50 нм) в дозировке 19,8 мг/кг корма, селенита натрия в дозировке 260 мкг/кг корма и цинка ZnO (40 нм) в дозировке 20 мг на кг корма, для снижения себестоимости на 1% и увеличения рентабельности на 0,8%.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Направление и реализация исследований, представленные в диссертационной работе, перспективны для дальнейшего развития тематики:

- изучение совместного влияния микроэлементов, микроорганизмов катализаторов органоминеральной виде аминокислот на матрице морфобиохимические организма определением показатели c механизма взаимодействия при формировании продуктивных качеств сельскохозяйственной птицы.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ:

Статьи, опубликованные в изданиях, рекомендованных ВАК Минобрнауки РФ:

- 1. Применение пробиотических препаратов в кормлении кур-несушек и цыплят-бройлеров (обзор) / Ю.К. Петруша, Д.А. Силин, С.В. Лебедев, В.В. Гречкина // Аграрный научный журнал. 2023. № 12. С. 116–121. DOI: 10.28983/asj.y2023i12pp116-121.
- 2. Влияние фитобиотических и пробиотических веществ, а также пищевых волокон и энтеросорбента на функциональные показатели и состав кишечного микробиома кур-несушек / Д.А. Силин, С.В. Лебедев, И.А. Вершинина [и др.] // Российская сельскохозяйственная наука. 2025. № 1. С. 49–57. DOI: 10.31857/S2500262725010091.
- 3. Силин, Д.А. Влияние пробиотико-минерального комплекса на яичную продуктивность, морфологический и химический состав яиц кур-несушек кросса Хайсекс Браун / Д.А. Силин, Ю.К. Петруша, С.В. Лебедев // Птицеводство. 2025. 10.33845/0033-3239-2025-74-9-40-45.
- 4. Силин, Д.А. Влияние пробиотика и комплекса хелатных форм микроэлементов на зоотехнические показатели, переваримость питательных веществ и микробиом кур-несушек / Д.А. Силин, Ю.К. Петруша, С.В. Лебедев // Ветеринария и кормление. -2025. -№ 6. C. 106–110. DOI: 10.30917/ATT-VK-1814-9588-2025-6-.

Публикации в других научных изданиях и в материалах научно-практических конференций:

- 5. Силин, Д. А. Влияние биологически активных добавок на переваримость питательных веществ и яйценоскость кур-несушек / Д.А. Силин, С.В. Лебедев // Материалы Всероссийской молодежной научно-практической конференции «Наука будущего наука молодых», Оренбург, 9–10 ноября 2022 года. С. 55–59.
- 6. Кальций-фосфоровый обмен у кур-несушек при введении в рацион биологически активных добавок / Д.А. Силин, С.В. Лебедев, В.В. Гречкина // Сборник статей Всероссийской научно-практической конференции «Безопасность и качество сельскохозяйственного сырья и продовольствия-2022». С. 115–119.

- 7. Влияние биологически активных добавок на белковый обмен кур-несушек / Д.А. Силин, С.В. Лебедев // Сборник статей Всероссийской научно-практической конференции «Безопасность и качество сельскохозяйственного сырья и продовольствия-2022». С. 119–122.
- 8. Силин, Д.А. Изучение поедаемости корма и яйценоскости кур- несушек при добавлении биологически активных веществ в рацион / Д.А. Силин // Сборник статей Всероссийской научно-практической конференции «Безопасность и качество сельскохозяйственного сырья и продовольствия-2022». С. 122—125.
- 9. Силин, Д.А. Сравнение влияния биологически активных добавок на эффективность использования кормов и яйценоскость кур-несушек / Д.А. Силин, С.В. Лебедев // Материалы Международной научно-практической конференции «Перспективы устойчивого развития аграрно-пищевых систем на основе рационального использования региональных генетических и сырьевых ресурсов», Волгоград, 08 июня 2023 года. С. 116–120.
- 10. Силин, Д. А. Влияние пробиотико-минерального комплекса на качество яиц кур-несушек / Д.А. Силин // Материалы II Всероссийской молодежной научно-практической конференции «Наука будущего наука молодых». Оренбург, 23-24 ноября 2023 года. С. 21—25.
- 11. Силин, Д.А. Влияние пробиотико-минерального комплекса на зоотехнические показатели выращивания кур-несушек / Д.А. Силин, С.В. Лебедев // Материалы Всероссийской научно-практической конференции «Актуальные вопросы и инновации в животноводстве», г. Оренбург, 22-23 мая 2024 года. С. 41—44.
- 12. Силин, Д.А. Оценка влияния биоактивных веществ на обмен веществ и продуктивность кур-несушек / Д.А. Силин, С.В. Лебедев // Материалы международной научно-практической конференции «Зоотехния сегодня приоритеты и перспективы развития», Оренбург, 27 марта 2025 года. С. 83—88.
- 13. Силин, Д.А. Влияние пробиотико-минерального комплекса на продуктивность, биохимические показатели крови и антиоксидантный статус у курнесушек / Д.А. Силин // Сборник научных трудов XIX международной научнопрактической конференции «Научные основы повышения продуктивности, здоровья животных и продовольственной безопасности», Краснодар, 20–22 мая 2025 года. Том. 14, № 1. С. 66–71. DOI: 10.48612/sbornik-2025-1-15.

Силин Дмитрий Алексеевич

Обмен веществ и продуктивность кур-несушек при использовании в рационе пробиотико-минерального комплекса

4.2.4. Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства

Автореферат

диссертации на соискание ученой степени кандидата биологических наук

Подписано в печать 24.10.2025 г. Формат 60x90/16. Объем - 1,0 усл. печ. л Тираж 100 экз. Заказ № 14

Издательский центр ФГБНУ ФНЦ БСТ РАН 460000, г. Оренбург, ул. 9 Января, 29